

PRODUCT GUIDE TIMING - FLAT - MULTI-V RIB

Megadyne, headquartered in Mathi, Italy, is a global manufacturer of rubber and urethane belting used in power transmission, product handling and linear positioning applications.

Started in 1957 by Corrado Tadolini, Megadyne first developed cast urethane timing belts. After six decades of progressive expansion, organic development and strategic acquisitions, Megadyne continues to solidify its leadership role as a manufacturer and fabricator of belt solutions in the Americas, EMEA and APAC.

This brochure presents our urethane timing, flat and multi-vee belt portfolio. From a broad range of material options and manufacturing processes located in all three regions of the world, Megadyne is well positioned to meet your synchronous and non-synchronous belt requirements. Additionally, our state-of-the-art fabrication facilities can work hand in hand as your partner in design to deliver tomorrow's solutions today!

TABLE OF CONTENTS

Belt Basics - Materials, Alternative Tensile Members, Optional Compounds and Colors	2
Main Industries & Applications - Conveying, Linear Positioning, Power Transmission	3
Megalinear- Open End Polyurethane Belts	4
Megalinear Imperial (MXL, XL, L, H, XH)	5
Megalinear Metric T (T2.5, T5, T10, T20)	6
Megalinear Metric AT (AT3, AT5, AT10, AT20)	7
Megalinear MTD (MTD3, MTD5, MTD8, MTD14)	8
Megalinear RPP (RPP5, RPP8, RPP14)	9
Megalinear STD (STD5, STD8)	10
Megalinear - With Integrated Tracking Guides (HG, TG5, TG10, TG20, ATG5, ATG10, ATG20)	11
Megalinear - Wide (H Wide, T5 Wide, T10 Wide)	12
Megalinear T10 & AT10 - Without Gap (T10 without Gap, AT10 without Gap)	13
Megalinear TT 5 For Circular Knitting Machines	14
Megalinear Flat (P1, P2, P3, P4)	15
Megalinear QST - Quiet Self Track (QST5, QST8, QST14)	16
Megalinear GW (GW14, GW20)	17
Megalinear - Belt Joining Options (Heat Welding, Clamps, PPJ Fastening System)	18
Megaflex - Truly Endless Polyurethane Belts	19
Megaflex Imperial (XL, L H, XH)	20
Megaflex Imperial - Dual (DL) Sided (XL-DL, L-DL, H-DL, XH-DL)	21
Megaflex Metric T (T5, T10, T20)	22
Megaflex Metric T - Dual (DL) Sided (T5-DL, T10-DL, T20DL)	23
Megaflex Metric AT (AT5, AT10, ATG10, AT15, AT20)	24
Megaflex Metric AT - Dual (DL) Sided (AT5-DL, AT10-DL, AT20-DL)	25
Megaflex RPP - Single & Dual (DL) Sided (RPP5, RPP5-DL, RPP8, RPP8-DL, RPP14, RPP14-DL)	26
Megaflex MTD & P2 Flat (MTD8, P2)	27
Megapower2 - Cast Polyurethane Endless Belts	28
Megapower2 Imperial (MXL, XL, L, H)	29
Megapower2 Metric - Single & Dual (DL) Sided (T2.5, T5, T5-DL, T10, T10-DL, AT5, AT10)	30
Megarib - Polyurethane Endless Ribbed Belts (H, J, TB2)	31
Megalinear FC - Metric T - Food Contact - Without Gap (T5, T10)	32
Megapower Metric FC - Food Contact (L, H, T5, T5DD, T10, T10DD, AT10)	33
Extruded Cover Options	34
Fabricated Cover Options	35
Coated Cover Options	36
Modifications (Grinding, Perforations, Countersinks, Holes, Slots, Pockets, etc.)	37
Cleats	40
Cleats - Weld On Type	41
Cleats - Mechanical Type	42
Pulleys Olassam of Bakawathana Tamas	43
Glossary of Polyurethane Terms	44
Terms, conditions & Limited Warranty of Sale	45

BELT BASICS

MATERIALS

PRODUCT	MEGALINEAR	MEGAFLEX	MEGAPOWER	MEGARIB		
Standard Elastomer	92 Shore A TPU	- Thermoplastic	88 Shore A PU - Thermoset	85 Shore A PU - Thermoset		
Standard Color	Wi	nite	Gray	/Green		
Process	Extru	usion	Mo	lding		
Standard Tensile Member		Steel		Polyester		
Cord Lay	Parallel		Helical			
Working Temperature		-25C°/+80C° (-13F°/+	176F°)	-15C°/+60C° (+5F°/+140F°)		
Linear Speed		Up to 20 m/s		Up to 60 m/s		

ALTERNATIVE CORD OPTIONS

TYPE	DESCRIPTION	MEGALINEAR	MEGAFLEX	MEGAPOWER	MEGARIB
Kevlar® (K)	Used in metal detection applications; an option for food related applications.	YES	YES	YES	NO
High Power (HP)	25% more strength than standard steel. Recommended for bi-directional positioning precision applications.	YES	YES	YES	NO
High Flexibility (HF)	High flexibility cords can accept smaller pulley and idler diameters than standard cords. Ideal for use on smaller than standard steel minimum pulleys and drives with severe reverse bending.	YES	YES	YES	NO
High Power and Flexibility (HPF)	25% Higher strength than standard steel along with high flex capability.	YES	YES	YES	NO
Stainless Steel (SS)	Designed for use in water/corrosive environments; cords have 25% less strength than standard steel.	YES	YES	YES	NO
Fiberglass (FG)	Strength for power transmission applications.	NO	NO	YES	NO
Nylon (N)	Elastic for use on fixed center distance drives.	NO	NO	NO	YES

Contact Megadyne for availability and detailed specifications

OPTIONAL POLYURETHANE COMPOUNDS & COLORS - MEGALINEAR & MEGAFLEX

ТҮРЕ	DUROMETER (Sh A)	COLOR	PROPERTIES
Hydrolysis-Resistant	85A Megalinear 88A Megapower	Dark Blue	For use in applications where the belt is exposed to water and moisture. Can also be supplied clear on special request.
High Temperature	92	Red	+ 120°C (+ 248°F)
High Temperature	90	Yellow	+ 150°C (+ 302°F)
Low Temperature	87	Gray	- 40°C (- 40°F)
FDA	85 & 90	Transparent	Conforms to FDA guidelines. Can also be supplied in white or blue on special request.
Extra Soft	85	Transparent	Softer compound than standard white 92 Shore A
Extra Hard	98	Transparent	Harder compound than standard white 92 Shore A
Silicone Free	92	Transparent	For painting systems
Custom Colors	Contact Megadyne	Multiple	Available on request

All options subject to minimum order quantity ${\rm Kevlar}^{\circledR}$ is a registered trademark of ${\rm DuPont}^{\circledR}$



		APPLICATIONS	
INDUSTRIES	POWER TRANSMISSION	CONVEYING	LINEAR POSITIONING
Material Handling	Roller conveyors	Live roller conveyors Right angle diverters Pallet conveyor Cross sorter Transport platform Weigh scales	Automated storage & retrieval Overhead cranes Elevators/vertical lifts
Packaging	Drive belts	Box and case erectors Filling lines Case packers Vertical & horizontal inserters Pick & place sortation Inserting lines Tube filling lines Capping lines Tray & carton packing machines	Palletizer lifts
Wood Industry	Drive belts	Veneer conveying Wood panel conveying Modular furniture assembly lines Grinding & sanding lines Cutting & drilling lines	Tenoner lines Fenestration
Paper & Print	Drive belts	Corrugating & die cutting Document feeders Collators Diaper & hygiene machines Tissue & roll stock cutting lines Paper folding & inserting machines Bookbinding equipment	Lead feed belts on paper Production lines
Automotive & Tire	Drive belts	Stamp metal forms Metal sheet loaders & unloaders Tire manufacturing Auto glass	Chassis lifting
Textile/Non-Wovens	Drive belts	Textile printing machines Circular knitting machines	Screen printing wiper blade belts Crosslapper machines
Food	Meat slicers Cheese slicers Vegetable processing	Cheese handling Sizing & grading lines Slicing belts Snack lines Tray conveying Food assembly lines	Food packaging Cutting and slicing equipment
Robotics & Automation	Drive belts	Ticketing machines Pick and Place Robotics	Door opening machines X-Y-Z movement Robotic movement Car wash motion
Ceramic, Glass, Brick & Stone	Grinding machines Cutting lines Beveling lines Drilling lines Polishing lines	Cutting lines Beveling lines Tempering lines Etching & glass printing machines Drilling lines	Glass processing Conveying lines

Other industries we serve are energy, machine tools, commercial/domestic appliance & equipment, elevators & lifts, medical and aluminum extrusion.

MEGALINEAR

*Kevlar® is a registered trademark of DuPont®

Megalinear Open-End Synchronous Belts are manufactured with thermoplastic polyurethane, which offers superior wear and excellent abrasion resistance. S+Z twist steel cords offer balanced running characteristics under high-torque loads.

Manufactured to tight tolerances, Megalinear delivers reliable and excellent dimensional stability. The addition of a nylon fabric on the tooth and/or the back of the belt during production enhances the running properties for specific applications. An extra thickness of polyurethane is also possible on the back of the belt, offering extra protection against abrasive or heavy products.

Mechanical Features:

- Consistent dimensional stability
- · Low installation tension
- Low noise
- · High abrasion resistance
- Low maintenance
- High flexibility
- Linear speeds up to 20 m/second (over 15,000 ft./min.)
- · High precision linear positioning

Chemical Features:

- · Good resistance to aging, hydrolysis, UVA rays & ozone
- Working temperature: -25°C to +80°C (13°F to + 176°F). Up to 110°C (+230°F) for short periods
- · High resistance to oils, fats and greases
- Good resistance to most acids and alkalis

Available Configurations

MEGALINEAR can be supplied as open-end rolls, endless spliced belts or as mechanically joined.

Open Length Belts

Megalinear belts are manufactured in continuous lengths, with the S+ Z cord reinforcement in a parallel configuration. Standard roll lengths are 50 or 100 meters. Other lengths available upon request. MEGALINEAR open-end belts are normally used in linear motion drives.

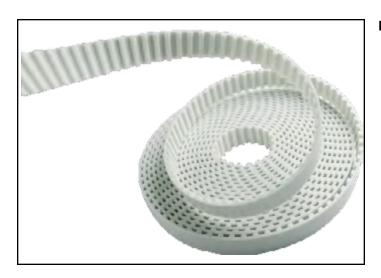
Endless Spliced Belts

Using the thermoplastic properties of Megalinear, it can be joined to any length by welding. The finished splice is resistant to fatigue from flexing and tension due to the unique symmetrical V-shaped pattern of the splice. Endless spliced belts are suitable for conveying applications, particularly when indexing and/or positive drive is required.

Mechanically Spliced Belts

PPJ (Progressive Pin Joint) can be placed in select belt pitches and widths for use in applications where long downtimes for belt installation must be avoided and a quick installation process is necessary.

- Nylon fabric on teeth (NFT)
- Nylon fabric on back of belt (NFB)
- Extra TPU backing
- Extruded covers
- Laminated covers
- Fabricated covers
- Anti-static fabric
- Cleats
- Cover side machined modifications
- Tooth side machined modifications
- FDA TPU compound

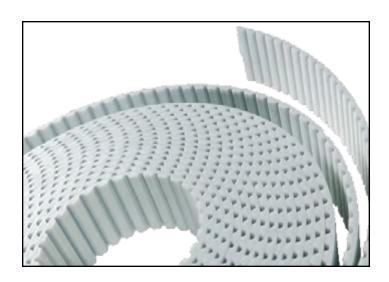

	H	P		MAX BELT WIDTH	COR	D OPTI	ons	MINIMUM	MINIMUM PULLEY TEETH/IDLER DIAMETER					
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H ₁)					PULLEY TEETH (Z) BY CORD	Z min.	Z min.	Idler min. dia. (inch)	Z min.	Idler min. dia. (inch)	
	Inch	Inch	Inch	Inch	Standard Cord	Kevlar	Stainless	ТҮРЕ	0-0	•		Q	00	
MXL	.080	.045	.026	0.5	Steel	Yes	NS	Kevlar	12	15	1.18	12	0.79	
								Steel	10	15	1.18	10	1.18	
XL	.200	.090	.050	2.0	Steel	Yes	Yes	Kevlar	10	15	1.18	10	0.79	
								Stainless	13	15	1.38	13	1.38	
								Steel	15	20	2.36	15	2.36	
L	.375	.141	.074	4.0	Steel	Yes	Yes	Kevlar	15	20	2.36	15	2.36	
								Stainless	18	20	2.56	18	2.56	
								Steel	14	20	3.15	14	2.36	
н	.500	.169	.090	6.0	Steel	Yes Yes		Kevlar	14	20	3.15	14	2.36	
								Stainless	18	20	3.15	18	2.56	
						el Yes Yes		Steel	18	20	7.08	18	5.90	
хн	.875	.441	.250	6.0	Steel			Kevlar	18	20	7.08	18	5.90	
								Stainless	23	25	7.08	23	6.50	

- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = white
- Standard cord = steel (MXL Kevlar on request)

- NS = Non-Standard Consult Megadyne for availability.
- · For additional details, request the Megalinear Technical Catalog.
- · All items subject to minimum order quantity.

- Nylon fabric on teeth (NFT)
- Nylon fabric on back of belt (NFB)
- Extra TPU backing
- Extruded covers
- Laminated covers
- Fabricated covers
- Anti-static fabric
- Cleats
- Cover side machined modifications
- Tooth side machined modifications
- FDA TPU compound

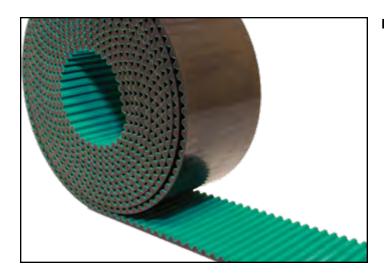
	H H,	P		MAX BELT WIDTH		C	ORD O	PTIO	NS		MINIMUM	MINIMUM	PULLE	EY TEETH/ID	LER DI	IAMETER
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H ₁)								PULLEY TEETH (Z) BY CORD	Z min.	Z min.	Idler min. dia. (mm)	Z min.	Idler min. dia. (mm)
	mm	mm	mm	mm	Standard Cord	Kevlar	High Power	High Flex	High Power Flex	Stainless	TYPE	0-0	•		0	00
T2.5	2.5	1.3	0.7	20	NS	Yes	NS	NS	NS	NS	Steel	10	18	15	10	18
											Steel	10	15	30	10	30
											Kevlar	12	15	30	12	30
T 5	5.0	2.3	1.2	150	Steel	Yes	Yes	Yes	NS	NS	Hi-Power	15	15	40	15	60
											High-Flex	10	12	30	10	30
											Stainless	15	18	40	15	40
											Steel	12	20	60	12	60
											Kevlar	15	20	60	15	60
							.,				Hi-Power	15	20	100	15	100
T10	10.0	4.5	2.5	150	Steel	Yes	Yes	Yes	Yes	Yes	High-Flex	12	15	50	12	50
											Hi-Power Flex	14	20	80	14	80
											Stainless	15	20	70	15	70
											Steel	15	25	120	15	120
											Kevlar	15	25	120	15	120
											Hi-Power	20	25	150	20	150
T20	20.0	8.0	5.0	150	Steel	Yes	Yes Yes	Yes	Yes	Yes	High-Flex	15	20	120	15	120
											Hi-Power Flex	18	25	120	18	120
											Stainless	20	25	130	20	130


- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = white
- Standard cord = steel

- NS = Non-Standard Consult Megadyne for availability
 For additional details, request the Megalinear Technical Catalog
 High Power, High Flex and High Power Flex are steel cords
- - All items subject to minimum order quantity

- · Nylon fabric on teeth (NFT)
- Nylon fabric on back of belt (NFB)
- Extra TPU backing
- · Extruded covers
- · Laminated covers
- · Fabricated covers
- · Anti-static fabric
- Cleats
- · Cover side machined modifications
- Tooth side machined modifications
- FDA TPU compound

	H H1	P		MAX BELT		COI	RD OI	PTIO	NS			MINIMUM I	PULLE	EY TEETH/IC	DLER I	DIAMETER
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H ₁)	WIDTH							MINIMUM PULLEY TEETH (Z) BY	Z min.	Z min.	Idler min. dia. (mm)	Z min.	Idler min. dia. (mm)
	mm	mm	mm	mm	Standard Cord	Kevlar	High Power	High Flex	High Power Flex	Stainless	CÓRD TYPE	0-0	•		0	
АТЗ	3.0	1.9	1.1	50	Steel	NS	NS	NS	NS	NS	Steel	20	25	30	20	30
											Steel	15	15	60	15	25
											Kevlar	15	25	60	15	25
											Hi-Power	25	25	60	25	40
AT5	5.0	2.7	1.2	100	Steel	Yes	Yes	Yes	Yes	Yes	High-Flex	12	13	40	12	25
											Hi-Power Flex	20	24	40	20	40
											Stainless	15	18	65	15	60
											Steel	15	20	120	15	50
											Kevlar	15	20	120	15	50
											Hi-Power	25	25	150	25	80
AT10	10.0	4.5	2.5	150	Steel	Yes	Yes	Yes	Yes	Yes	High-Flex	15	20	80	15	50
											Hi-Power Flex	16	20	100	16	60
											Stainless	19	25	110	19	110
											Steel	18	25	180	18	120
AT20	20.0	8.0	5.0	200	Steel	Yes	Yes	Yes	NS	NS	Kevlar	18	25	180	18	120
A. 20	20.0	0.0	0.0	200	Sicoi	103	103	103	1	140	Hi-Power	25	25	250	25	160
											High-Flex	18	25	150	18	120


- Standard compound = Thermoplastic polyurethane (TPU)
- · Compound hardness = 92 Shore A
- Standard color = white
- Standard cord = steel

- NS = Non-Standard Consult Megadyne for availability
- For additional details, request the Megalinear Technical Catalog
- · High Power, High Flex and High Power Flex are steel cords
- · All items subject to minimum order quantity

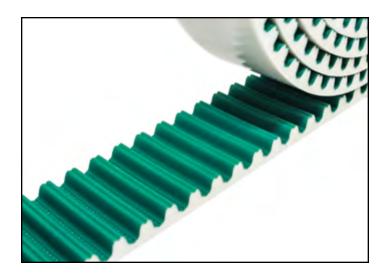
MEGALINEAR MTD

Below Options on Request:

- Nylon fabric on teeth (NFT)
- Nylon fabric on back of belt (NFB)
- Extra TPU backing
- Extruded covers
- Laminated covers
- Fabricated covers
- Anti-static fabric
- Cleats
- Cover side machined modifications
- Tooth side machined modifications
- FDA TPU compound

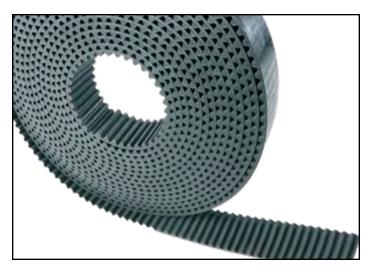
	H1	P		MAX BELT WIDTH		co	RD O	PTIO	NS		MINIMUM	MINIMUM F	PULLEY	TEETH/II	DLER I	DIAMETER
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H ¹)								PULLEY TEETH (Z) BY CORD	Z min.	Z min.	Idler min. dia. (mm)	Z min.	Idler min. dia. (mm)
	mm	mm	mm	mm	Standard Cord	Kevlar	High Power	High Flex	High Power Flex	Stainless	TYPE	0_0	0		0	00
MTD3	3.0	2.2	1.13	50	Steel	NS	NS	NS	NS	NS	Steel	20	20	30	20	30
											Steel	16	16	50	16	25
MTD5	5.0	3.6	2.1	50	Steel	Yes	NS	NS	NS	Yes	Kevlar	16	16	50	16	25
											Stainless	18	20	65	18	65
											Hi-Power	20	22	100	20	50
MTD8	8.0	5.6	3.4	100	Hi- Power	Yes	Yes	Yes	NS	Yes	Kevlar	20	22	100	20	50
	0.0	5.0	0.4	100	Steel	103	103	103	140	103	High-Flex	20	20	80	20	40
											Stainless	24	28	110	24	80
	14.0	10.0	6.1	115	Steel	Yes	NS	NS	NS	NS	Steel	26	28	180	26	120
MTD14	1-7.0	10.0	0.1	113	Oleei	100	140	140	140	140	Kevlar	26	28	180	26	120

- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = white
- Standard cord = steel (MTD8 = Hi-Power Steel)


- NS = Non-Standard Consult Megadyne for availability
- MTD is compatible with HTD pulleys
- · For additional details, request the Megalinear Technical Catalog
- · High Power and High Flex are steel cords
- · All items subject to minimum order quantity

WARNING: The black version of this product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer or birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

- · Nylon fabric on back of belt (NFB)
- Extra TPU backing
- · Extruded covers
- Laminated covers
- · Fabricated covers
- · Anti-static fabric
- Cleats
- · Cover side machined modifications
- · Tooth side machined modifications


	H ₁	P		MAX BELT WIDTH		СО	RD O	PTIC	NS		MINIMUM	MINIMUM PULLEY TEETH/IDLER DIAMETER					
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H ¹)								PULLEY TEETH (Z) BY CORD	Z min.	Z min.	Idler min. dia. (mm)	Z min.	Idler min. dia. (mm)	
	mm	mm	mm	mm	Standard Cord	Kevlar	High Power	High Flex	High Power Flex	Stainless	TYPE	0-0	•				
											Steel	15	16	60	15	20	
RPP5	5.0	3.8	2.0	75	Steel	Yes	Yes	NS	NS	Yes	Kevlar	15	16	60	15	20	
	0.0	0.0	2.0	/5	Otoci	103	103	110	140	103	Stainless	18	18	65	18	65	
											Hi-Power	20	22	60	20	40	
RPP8	8.0	5.4	3.2	100	Steel	Yes	NS	NS	NS	NS	Steel	18	20	100	18	45	
	0.0	5.4	0.2	100	Oleei	163	143	143	140	140	Kevlar	18	20	100	18	45	
RPP14	14.0	10.0	6.0	150	Steel	NS	NS	NS	NS	NS	Steel	32	35	250	32	145	

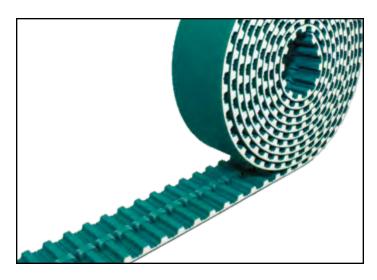
- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = white
- Standard cord = steelStandard NFT (nylon fabric on teeth)

- NS = Non-Standard Consult Megadyne for availability
- RPP is compatible with HTD pulleys
- For additional details, request the Megalinear Technical Catalog
- · High Power, High Flex and High Power flex are steel cords
- All items subject to minimum order quantity

MEGALINEAR STD

Below Options on Request:

- Nylon fabric on back of belt (NFB)
- Extra TPU backing
- · Extruded covers
- · Laminated covers
- · Fabricated covers
- Anti-static fabric
- Cleats
- · Cover side machined modifications
- · Tooth side machined modifications

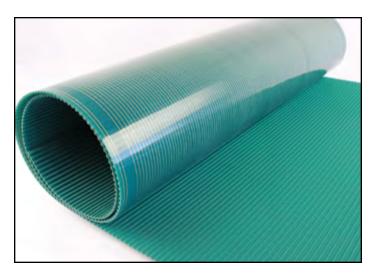

	H H1	P		MAX BELT		СО	RD O	PTIC	NS			MINIMUM I	PULLE	Y TEETH/ID	LER C	DIAMETER
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H ¹)	WIDTH							MINIMUM PULLEY TEETH (Z)	Z min.	Z min.	Idler min. dia. (mm)	Z min.	Idler min. dia. (mm)
	mm	mm	mm	mm	Standard Cord	Kevlar	High Power	High Flex	High Power Flex	Stainless	BY CORD TYPE	0-0	•		0	
STD5	5.0	3.4	1.91	50	Steel	NS	NS	NS	NS	NS	Steel	12	13	60	12	20
											High Power	20	24	100	20	50
STD8	8.0	5.1	3.05	85	HP Steel	Yes	Yes	Yes	NS	NS	Kevlar	20	24	100	20	50
											High Flex	16	24	60	22	40

- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = black
- Standard cord = steel (STD8 = High Power Steel)
- Standard NFT (nylon fabric on teeth)

- NS = Non-Standard Consult Megadyne for availability
- STD is compatible with STPD pulleys
- For additional details, request the Megalinear Technical Catalog
- · High Power, High Flex and High Power Flex are steel cords
- All items subject to minimum order quantity

- Nylon fabric on teeth (NFT)
- Nylon fabric on back of belt (NFB)
- Extra TPU backing
- Extruded covers
- Laminated covers
- Fabricated covers
- Anti-static fabric
- Cleats
- Cover side machined modifications
- Tooth side machined modifications

K BELT BELT TOOTH OVERAL						COF	RD O	PTIO	NS		MINIMUM PULLEY TEETH (Z) BY CORD	MINIMU				/IDLER
BELT PITCH (P)	BELT THICKNESS (H)	TOOTH HEIGHT (H ¹)	OVERALL THICKNESS (h)								TYPE	Z min.	Z min.	Idler min. dia. (mm)	Z min.	Idler min. dia. (mm)
mm	mm	mm	mm	mm	Standard Cord	Kevlar	High Power	High Flex	High Power Flex	Stainless			0	9	0	
0.5"	0.079"	0.090"	0.326"	6.0"	Steel	Yes	NS	NS	NS	NS	Steel	20	22	160	20	80
0.0	0.070	0.000	0.020	0.0	Otool	100		110		110	Kevlar	20	22	160	20	80
5.0	2.5	1.2	5.0	50	Steel	Yes	NS	NS	NS	NS	Steel	25	28	180	25	60
											Kevlar	25	28	180	25	60
											Steel	25	28	80	25	80
10.0	4.5	2.5	5.3	50	Steel	Yes	NS	NS	NS	Yes	1 11					80
												-	_			90
												-				80
10.0	4.5	2.5	8.5	100	Steel	Yes	NS	NS	NS	Yes		-				80
																90
20.0	8.0	5.0	8.5	100	Steel	Yes	NS	NS	NS	NS						120
F 0	4.5	1.0	F F	F0	Ctool	NC	NC	NC	NC	NC						120 80
5.0	4.5	1.2	5.5	50	Steel	N5	N5	NS	N5	NS		-				80
												-		-		100
10.0	4.5	2.5	8.5	150	Steel	Yes	Yes	NS	NS	Yes		-	-	-		120
																130
20.0	8.0	5.0	9.4	150	Steel	NS	NS	NS	NS	NS						160
	BELT PITCH (P) mm 0.5" 5.0 10.0 20.0 5.0	BELT PITCH (P)	BELT HICKNESS (H) mm mm mm 0.5" 0.079" 0.090" 5.0 2.5 1.2 10.0 4.5 2.5 10.0 4.5 2.5 20.0 8.0 5.0 5.0 4.5 1.2	BELT HITCH CH CH CH CH CH CH CH	MAX BELT WIDTH HICKNESS (h) MAX BELT WIDTH HICKNESS (h) MAX BELT WIDTH HEIGHT HICKNESS (h) MMM M	Name	Name	MAX BELT WIDTH HI HI WIDTH W	H H H H H H H H H H	H H H H H H H H H H	Name	MAX BELT WIDTH MINIMUM PULLEY TEETH (2) BY CORD OPTIONS MINIMUM PULLEY TEETH (2) BY CORD TYPE	Name Name	NAX BELT WIDTH NAME NAME	Name	MAX BELT WIDTH SHELT WIDTH


- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = white
- Standard cord = steel

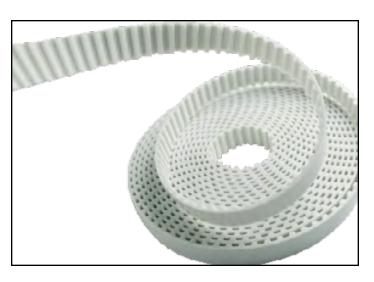
- NS = Non-Standard Consult Megadyne for availability
 For additional details, request the Megalinear Technical Catalog
 High Power, High Flex and High Power Flex is steel cord
- All items subject to minimum order quantity

MEGALINEAR - WIDE

Below Options on Request:

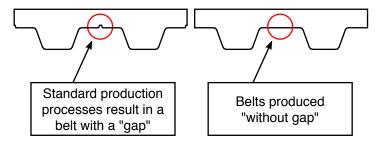
- Nylon fabric on teeth (NFT)
- Nylon fabric on back of belt (NFB)
- Extra TPU backing
- Fabricated covers
- Anti-static fabric
- Cleats
- Cover side machined modifications
- Tooth side machined modifications
- FDA TPU compound

	H H,	P		MAX BELT WIDTH				MINIMUM	MINIMU		ILLEY TE	-	DLER
IYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H ₁)		SHORE A HARDNESS	COLOR	STD CORD	PULLEY TEETH (Z) BY CORD TYPE	Z min.	Z min.	Idler min. dia. (mm)	Z min.	Idler min. dia. (mm)
	mm	mm	mm	mm								0	00
H WIDE	0.5"	.169"	.090"	20"	90	Transparent	Kevlar	Kevlar	14	20	3.15"	14	2.36"
T5 WIDE	5.0	2.3	1.2	500		Transparent	Kevlar	Kevlar	12	15	45	12	45
T10 WIDE	10.0	4.5	2.5	500	90	Transparent	Kevlar	Kevlar	15	20	60	15	60


- Common applications for Megalinear Wide include conveyors, automotive For additional details, request the Megalinear Technical Catalog metal stamping, tire production and diaper manufacturing

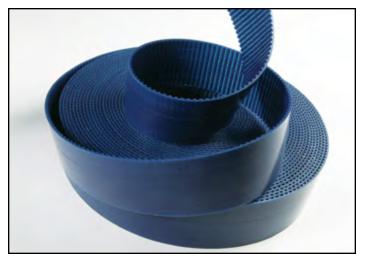
 - · All items subject to minimum order quantity

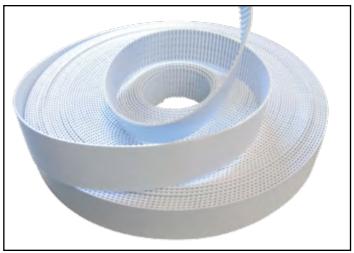
- Extra TPU backing
- Extruded covers
- Laminated covers
- Fabricated covers
- Anti-static fabric
- Cleats
- Cover side machined modifications
- Tooth side machined modifications
- FDA colors blue and transparent available on request.
- Kevlar Cord


		ı	ı						MINIMUM P	ULLE	Y TEETH/IDI	LER D	IAMETER
TYPE	H H,	P		MAX BELT	SHORE A	COLOR	STD	MINIMUM PULLEY TEETH (Z)	Z min.	Z min.	Idler min. dia. (mm)	Z min.	Idler min. dia. (mm)
	BELT PITCH (P) mm	OVERALL THICKNESS (H) mm	TOOTH HEIGHT (H ₁) mm	WIDTH mm	HARDNESS		CORD	BY CORD TYPE		•		0	
T10 WITHOUT	40.0	4.5	0.5	75	05 +- 00	\A/I=:4=	Oteral	Steel	12	20	60	12	60
GAP	10.0	4.5	2.5	75	85 to 92	White	Steel	Kevlar	15	20	60	15	60
AT10	10.0	4.5	0.5	100	051, 00	34//-21	011	Steel	15	20	120	15	50
WITHOUT GAP	10.0	4.5	2.5	100	85 to 92	White	Steel	Kevlar	15	20	60	15	60

- Common applications for T10 and AT10 without gap include food washdown For additional details, request the Megalinear Technical Catalog and automatic car wash units

 - All items subject to minimum order quantity


WARNING: This product can expose you to chemicals including titanium dioxide, which is known to the State of California to cause cancer or birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov


What is a belt "without gap"?

T10 & AT10 belts "without gap" are commonly used in applications where contamination is a concern and/or where moisture is present. The absence of the gap protects the cord from corrosion and contamination.

MEGALINEAR TT 5 FOR CIRCULAR KNITTING MACHINES

	H H,	P		MAX BELT WIDTH				ORD FIONS	MINIMUM	МІМІМ		LEY TEE	ETH/ID	LER
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H ₁)		SHORE A HARDNESS	COLOR			PULLEY TEETH (Z) BY CORD TYPE	Z min.	Z min.	Idler min. dia. (mm)	Z min.	Idler min. dia. (mm)
	mm	mm	mm	mm			Steel	Kevlar		0-0	0	0	0	
TT 5 WHITE	5.0	3.0	1.2	10	88A	White	Yes	NS	Steel	10	15	30	10	30
TT 5 BLUE	5.0	2.8	1.2	10	88A	Blue	NS	Yes	Kevlar	12	15	30	12	30

- NS = Non-Standard Consult Megadyne for availability
- For additional details, request the Megalinear Technical Catalog
- Produced in 50 mm width and slit to 10 mm width for circular knit applications
- · All items subject to minimum order quantity

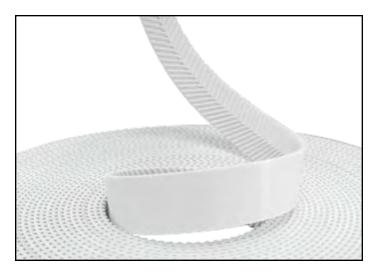
<u>_!\</u>

- · Nylon fabric on drive side
- Extra TPU backing
- Extruded covers
- Laminated covers
- · Fabricated covers
- · Anti-static fabric
- Cleats
- · Cover side machined modifications

								MINIMUM PUL	LEY/IDLER D	IAMETER
ТҮРЕ	(H) BELT THICKNESS	MAX BELT	SHORE A	COLOR	CORD OF	TIONS	MINIMUM PULLEY DIAMETER	Driver min. dia. (mm)	Driver min. dia. (mm)	Idler min. dia. (mm)
	(mm)	(mm)	HANDNESS		Standard Cord	High Power Steel	BY CORD TYPE		0	
P1	1	20	92	Blue	Steel	NS	Steel	16	25	30
P2	2	100	92	White	Steel	Yes	Steel	45	50	90
PZ	2	100	92	vvriite	Sieei	162	High Power	56	62	150
Р3	3	120	92	Black	Steel	NS	Steel	100	110	150
P4	4	100	92	Transparent	Steel	NS	Steel	100	110	150

- · Compound Hardness 92 Shore A
- Standard Cord Steel
- NS = Non-Standard Consult Megadyne for availability
- · P3 is made with a helical gap

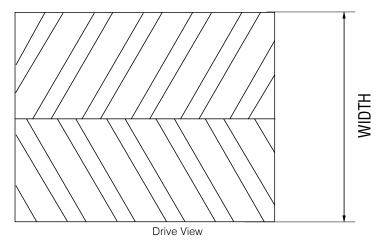
- · For additional details, request the Megalinear Technical Catalog
- High Power is steel cord
- All items subject to minimum order quantity



WARNING: The white version of this product can expose you to chemicals including titanium dioxide, which is known to the State of California to cause cancer or birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

MEGALINEAR QST - QUIET SELF TRACK

Megalinear QST is an open end urethane belt with a dual helix tooth design that delivers reduced noise level, self-tracking and high torque capacity. This belt is ideal for applications including linear movement, elevators, automatic warehouse, automatic doors and packaging.


Below Options on Request:

- · Extra TPU backing
- · Extruded covers
- Laminated covers
- Fabricated covers
- Cleats
- · Cover side machined modifications

		P	H ₁ H	MAX BELT	COR	D OPTI	ons	MINIMUM	MINIMUM P	ULLEY	TEETH/II	DLER D	AMETER
ТҮРЕ	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H ₁)	WIDTH				PULLEY TEETH (Z) BY CORD	Z min.	Z min.	Idler min. dia. (mm)	Z min.	Idler min. dia. (mm)
	mm	mm	mm	mm	Steel	Hi- Power	Extra Hi- Power	TYPE	0-0	0		0	
QST 5	5.0	3.60	1.91	24	Yes	N/S	N/S	Steel	16	25	60	16	30
QST 8	8.0	5.33	3.05	32*	Yes	Yes	N/S	Steel	16	25	60	16	30
4316	6.0	5.33	3.05	32	162	162	IN/3	Hi-Power	20	30	120	20	50
								Steel	32	32	200	32	140
QST 14	14.0	8.64	5.33	70**	Yes	N/S	Yes	Extra Hi-Power	32	32	200	32	140

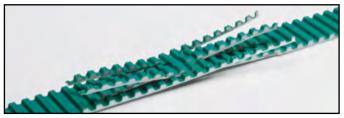
- * 50 mm with high power cord
- ** 105mm with extra high power cord
- Standard compound = 92 Shore A
- Standard color = white

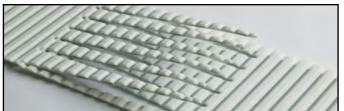
- Available with NFT (nylon fabric facing on teeth)
- NS = Non-Standard Contact Megadyne for availability
- For additional details, request the Megalinear Technical Catalog
- All items subject to minimum order quantity

Megalinear GW is a high performance urethane belt with high tension steel zinc coated cords designed to ensure superior load capacity. This belt is ideal for high load applications including automatic storage and retrieval systems (ASRS), lifting and handling applications, lift platforms and vertical transport of vehicles.

Below Options on Request:

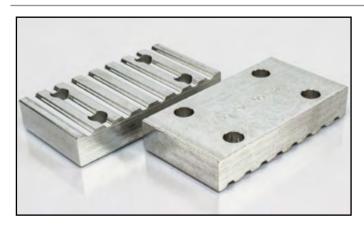
- · Silicone-free TPU
- Extruded covers
- · Laminated covers
- FDA TPU compound


			WIDTH H	MAX BELT WIDTH	MINIMUM PULLEY TEETH (Z)	MINIMUN	1 PULLEY TEE DIAMETER	FH/IDLER
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H ₁)		BY CORD	Z min.	Z min.	Idler minimum diameter (mm)
	mm	mm	mm	mm		0-0	9	0
GW14	14	10.0 6.0		200	Steel	32	36	250
GW20	20	14.3	8.6	200	Steel	38	44	380


- · Standard compound Thermoplastic urethane
- Compound hardness 96 Shore A
- Standard Color Black
- Available with NFT
- Standard cord S&Z zinc coated steel

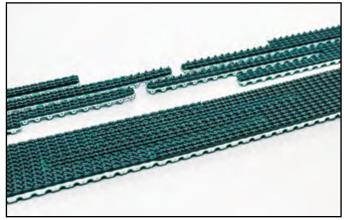
- · Contact Megadyne for pulleys and clamps
- GW14 Pulley & Clamp profile conforms to ISO 13050 G profile
- GW20 Pulley & Clamp profile is non-standard Contact Megadyne
- · GW belts are not designed for endless applications, only open-end use
- All items subject to minimum order quantity
- For additional details, request the Megalinear Technical Catalog

MEGALINEAR - BELT JOINING OPTIONS



MEGALINEAR BELTS JOINED ENDLESS

Megalinear Open End Extruded belt, can be made endless to any length needed by simply finger punching the ends of the desired length and interlocking the fingers. The belt is then joined endless by a heat and pressure process. Belts joined endless are most commonly used in general conveying applications.


Megalinear belts that are joined endless are coded J.



CLAMPED ENDS

Open-end belt can be joined endless by using mechanical clamps. This option is most common where belts are used in linear positioning applications, such as on vertical lifts, automated storage and retrieval systems and shuttle drives, as well as those found on crosslapper machines in the non-woven industry.

Contact Megadyne for availability.

PPJ

Megadynes' Progressive Pin Joint (PPJ) system is designed to allow the user a simple, reliable method of placing a timing belt on an application without the need to tear apart the conveyor or join the belt endless on line. PPJ is a perfect option for parallel path belts where the load being moved is spread across several belts. Installation and replacement of belts is fast, simple and cost saving.

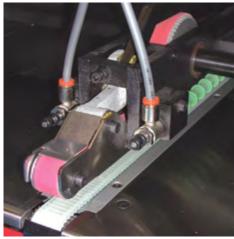
PPJ is available for the following belt types.

F	PJ AVAII	LABILITY	
BELT TYPE	WIDTH (mm)	BELT TYPE	WIDTH (mm)
T10/AT10	25	T20/AT20/ATG20	75
TG10 K6	25	HTD8/RPP8	20
T10/AT10	32	HTD8/RPP8	30
T10/AT10	50	HTD8/RPP8	50
T10/AT10	75	HTD8/RPP8	85
T10/AT10	100	HTD8/RPP8	100
TG10/ATG10	50	HTD14/MTD14	55
T20/AT20	32	HTD14/MTD14	85
T20/AT20	50	H 075	19.05
HG 150	38.1	H 100	25.4
HG 200	50.1	H 200	50.1

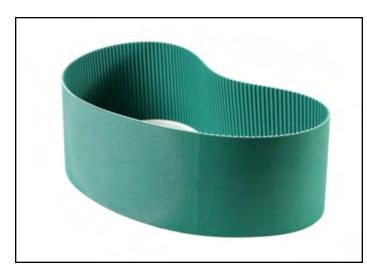
MEGAFLEX (MFX) Truly Endless Timing Belts are manufactured with thermoplastic polyurethane and continuous spiral steel cords. They are especially suited for heavy load conveying and for power transmission where urethane offers material benefits and where high loads and high speeds (up to 10,000 RPM) are present. The addition of nylon fabric on the teeth during production enhances the running properties for specific applications and reduces noise. An extra thickness of special backing is also possible on the back of the belt, offering extra protection against abrasive or heavy products.

Megaflex belts are truly endless, enabling them to deliver exceptional performance and are available in lengths from 1.5 up to 22.7 meters (4.9 to 74.4 feet).

MECHANICAL AND CHEMICAL CHARACTERISTICS


- · Stable dimensions
- Low noise
- Maintenance free
- High flexibility
- High resistance steel traction cords offer minimum elongation and exceptional flexibility
- · Linear speeds up to 20 m/s
- Low installation tension
- · Consistent length
- High abrasion resistance
- · Aging, hydrolysis and ozone resistant
- Working temperature -25°C/+80°C (-13°F / +176°F)
- High resistance to oils, grease and gasoline
- · Acid and alkali resistant

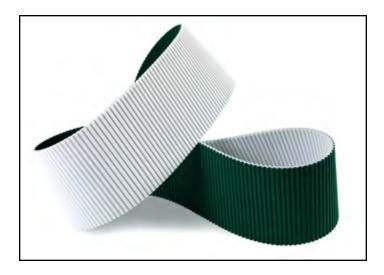
Construction Options:


- NFT Nylon fabric on tooth available from 1.9 meters and up
- S+Z cord

Below Options on Request with Minimum Order Qty.:

- Nylon fabric on teeth (NFT) available from 1.9 meter (6.2 feet) and up
- Extra TPU backing
- Extruded covers
- Laminated covers
- Fabricated covers
- Anti-static fabric tooth side only
- Cleats
- Cover side machined modifications
- Tooth side machined modifications

	н <u>н</u> , <u>н</u> ,	P			COR	D OPTIO)NS				MUM PULLEY DLER DIAME	
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H1)						MINIMUM PULLEY TEETH (Z) BY CORD	Z min.	Outside Idler (inch)	Inside Idler (inch)
	Inch	Inch	Inch	Standard Cord	Kevlar	High Power	High Flex	Stainless	TYPE	(+) (+)	(+ (+)	(±)
									Steel	10	1.18	1.18
XL	0.200	.090	.050	Steel	Yes	NS	Yes	Yes	Kevlar®	10	1.18	0.79
AL	0.200	.090	.050	Steel	res	INS	res	res	High Flex	10	1.18	1.18
									Stainless	13	1.38	1.38
									Steel	15	2.36	2.36
L	0.375	.141	.074	Steel	NS	NS	Yes	Yes	High Flex	12	1.57	1.57
									Stainless	18	2.56	2.56
									Steel	14	3.15	2.36
н	0.500	.169	.090	Steel	Yes	Yes	Yes	Yes	Kevlar®	14	3.15	2.36
••	0.500	.103	.090	Oteei	163	163	163	163	High-Flex	14	1.97	1.97
									Stainless	18	3.15	2.56
									Steel	18	7.08	5.90
хн	0.875	.441	0.25	Steel	NS	Yes	NS	Yes	High Flex	18	4.72	4.72
									Stainless	24	7.08	6.50


- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = white
- Standard cord = steel • Minimum belt length - 59.0 inches

- Maximum belt length = 74.7 feet
- Maximum belt width = 6.0 inches
- NS = Non-Standard Consult Megadyne for availability
- For additional details, request the Megaflex Technical Catalog
- High Power and High Flex are steel cord
- · All items subject to minimum order quantity

Below Options on Request with Minimum Order Qty.:

- · Nylon fabric on teeth (NFT) available from 1.9 meter (6.2 feet) and up - drive side only
- Anti-static fabric drive side only

	H H1 H1	P			COR	D OPTIO	ons				MUM PULLEY DLER DIAMET	
ТҮРЕ	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H¹)						MINIMUM PULLEY TEETH (Z) BY CORD	Z min.	Outside Idler (inch)	Inside Idler (inch)
	Inch	Inch	Inch	Standard Cord	Kevlar	High Power	High Flex	Stainless	ТУРЕ	(+) (+) (+)	(+ (+)	(1)
									Steel	15	1.18	1.18
XL-DL	0.200	0.12	.050	Steel	NS	NS	Yes	Yes	High Flex	15	1.18	1.18
									Stainless	18	1.38	1.38
									Steel	20	2.36	2.36
L-DL	0.375	0.18	.074	Steel	NS	NS	Yes	Yes	High Flex	18	1.57	1.57
									Stainless	22	2.56	2.56
									Steel	20	3.15	2.36
H-DL	0.500	0.23	.090	Steel	NS	NS	Yes	Yes	High-Flex	18	1.97	1.97
									Stainless	24	3.15	2.56
									Steel	25	7.08	5.90
XH-DL	0.875	0.60	.250	Steel	NS	NS	NS	Yes	High Flex	22	4.72	4.72
									Stainless	28	7.08	6.50

- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = white
- Standard cord = steel
- Minimum belt length 59.0 inches

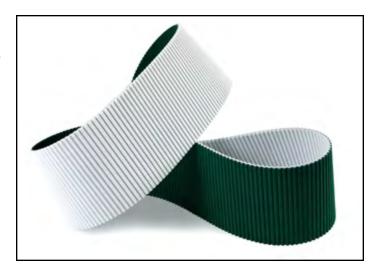
- Maximum belt length = 74.7 feet
- · Maximum belt width = 6.0 inches
- NS = Non-Standard Consult Megadyne for availability
 For additional details, request the Megaflex Technical Catalog
- · High Power and High Flex are steel cord
- · All items subject to minimum order quantity

Below Options on Request with Minimum Order Qty.:

- Nylon fabric on teeth (NFT) available from 1.9 meter (6.2 feet) and up - drive side only
- · Extra TPU backing
- · Extruded covers
- Laminated covers
- Fabricated covers
- · Anti-static fabric tooth side only
- Cleats
- · Cover side machined modifications
- · Tooth side machined modifications

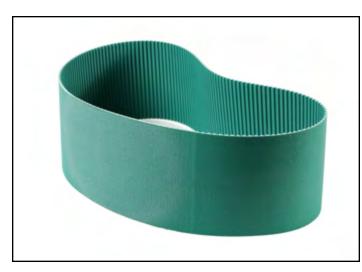
	H H,	P				CORI	о ОРТ	IONS					UM PULLEY .ER DIAME [:]	
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H ₁)								MINIMUM PULLEY TEETH (Z) BY CORD TYPE	Z min.	Outside Idler (mm)	Inside Idler (mm)
	mm	mm	mm	Standard Cord	Kevlar	High Power	High Flex	High Power Flex	Stainless	HP Stainless		(+) (+)	(±)	+}
											Steel	10	30	30
											Kevlar	12	30	30
											High Power	15	40	60
T5	5.0	2.2	1.2	Steel	Yes	Yes	Yes	Yes	Yes	Yes	High Flex	10	30	30
											Hi-Power Flex	12	40	40
											Stainless	15	40	40
											Hi-Power Stainless	18	65	60
											Steel	12	60	60
											Kevlar	15	60	60
											High Power	15	100	100
T10	10.0	4.5	2.5	Steel	Yes	Yes	Yes	Yes	Yes	Yes	High Flex	12	50	50
											Hi-Power Flex	14	80	80
											Stainless	15	70	70
											Hi-Power Stainless	20	150	150
											Steel	15	120	120
											Kevlar	15	120	120
											High Power	20	150	150
T20	20.0	8.0	5.0	Steel	Yes	Yes	Yes	Yes	Yes	Yes	High Flex	15	120	120
											Hi-Power Flex	18	120	120
											Stainless	20	130	130
											Hi-Power Stainless	24	160	160

- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = white
- Standard cord = steel
- Minimum belt length 1.5 meters


- Maximum belt length = 22.7 meters
- Maximum belt width = 150 mm
- · For additional details, request the Megaflex Technical Catalog
- · High Power, High Flex and High Power Flex are steel cord
- All items subject to minimum order quantity

Below Options on Request with Minimum Order Qty.:

- Nylon fabric on teeth (NFT) available from 1.9 meter (6.2 feet) and up - drive side only
- Anti-static fabric drive side only



	H	P			COR	D OP	rion:	5				MUM PULLE DLER DIAME	_
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	(H ₁)						MINIMUM PULLEY TEETH (Z) BY CORD TYPE	Z min.	Outside Idler (mm)	Inside Idler (mm)	
	mm	mm	mm	Standard Cord	Kevlar	High Power	High Flex	High Power Flex	Stainless		$ \begin{array}{c} $	(-)	(±)
										Steel	15	30	30
T5-DL	5.0	3.4	1.2	Steel	NS	NS	Yes	NS	Yes	High Flex	15	30	30
										Stainless	20	40	40
										Steel	20	60	60
T10-DL	10.0	7.0	2.5	Steel	NS	NS	Yes	NS	Yes	High Flex	20	50	50
										Stainless	24	70	70
										Steel	25	120	120
T20-DL	20.0	13.0	5.0	Steel	NS	NS	Yes	NS	Yes	High Flex	25	120	120
										Stainless	28	130	130

- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = white
- Standard cord = steel Minimum belt length - 1.5 meters

- Maximum belt length = 22.7 meters
- Maximum belt width = 150 mm
- NS = Non-Standard Consult Megadyne for availability
 For additional details, request the Megaflex Technical Catalog
- High Power, High Flex and High Power Flex are steel cord
- All items subject to minimum order quantity

Below Options on Request with Minimum Order Qty.:

- Nylon fabric on teeth (NFT) available from 1.9 meter (6.2 feet) and up - drive side only
- Extra TPU backing
- · Extruded covers
- Laminated covers
- · Fabricated covers
- Anti-static fabric tooth side only
- Cleats
- · Cover side machined modifications
- · Tooth side machined modifications

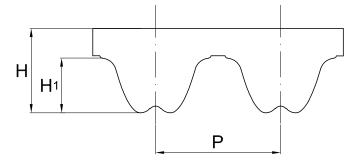
	H H1	P			C	ORD (OPTIC	ONS					NUM PULLEY DLER DIAMET	
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H1)								MINIMUM PULLEY TEETH (Z)	Z min.	Outside Idler (mm)	Inside Idler (mm)
	mm	mm	mm	Standard Cord	Kevlar	High Power	High Flex	High Power Flex	Stainless	High Power Stainless	BY CORD TYPE	(+) (+)	(-	(+)
											Steel	15	60	25
											Kevlar®	15	60	25
											High Power	25	80	80
AT5	5.0	2.7	1.2	Steel	Yes	Yes	Yes	Yes	Yes	Yes	High Flex	12	40	25
											Hi-Power Flex	20	70	70
											Stainless	18	65	60
											Hi-Power Stainless	25	80	80
											Steel	15	120	50
											Kevlar®	15	120	50
				<u>.</u>					.,		High Power	25	150	80
AT10	10.0	4.5	2.5	Steel	Yes	Yes	Yes	Yes	Yes	Yes	High Flex	15	80	50
											Hi-Power Flex	16	100	60
											Stainless	19	130	130
											Hi-Power Stainless	26	150	150
											Steel	25	120	100
ATG10	10.0	4.5	2.5	Steel	Yes	NS	Yes	NS	Yes	NS	Kevlar®	25	120	100
											High Flex	25	100	80
A=4=	45.0	0.0	0.0	011	NO	NO	NO	NO	NO	NO	Stainless	31	130	130
AT15	15.0	6.3	3.8	Steel	NS	NS	NS	NS	NS	NS	Steel	25	250	120
											Steel Kevlar®	18	180	120
												18	180	-
AT20	20.0	8.0	5.0	Steel	Yes	Yes	Yes	NS	Yes	Yes	High Power	25	250	160
											High Flex	18	150	120
											Stainless	20	200	150
											Hi-Power Stainless	26	260	180

- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = white/Standard cord = steel
- Minimum belt length is 1.5 meters
- Maximum belt length = 22.7 meters

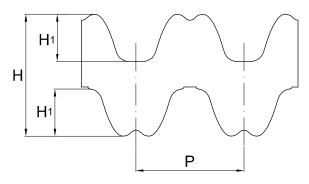
- Maximum belt width = 150 mm
- NS Non-Standard Consult Megadyne for availability
- For additional details, request the Megaflex Technical Catalog
- High Power, High Flex and High Power Flex are steel cord
- · All items subject to minimum order quantity

Below Options on Request with Minimum Order Qty.:

- Nylon fabric on teeth (NFT) available from 1.9 meter (6.2 feet) and up - drive side only
- · Anti-static fabric drive side only


	H1 H1	P	CORD OPTIONS							NUM PULLEY DLER DIAME				
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H¹)								MINIMUM PULLEY TEETH (Z) BY CORD TYPE	Z min.	Outside Idler (mm)	Inside Idler (mm)
	mm	mm	mm	Standard Cord	Kevlar	High Power	High Flex	High Power Flex	Stainless	High Power Stainless		(+) (+)	(+)	
											Steel	18	60	25
AT5-DL	5.0	3.9	1.2	Steel	NS	NS	Yes	NS	Yes	NS	High Flex	15	40	25
											Stainless	22	65	60
											Steel	25	120	50
AT10-DL	10.0	7.0	2.5	Steel	NS	NS	Yes	NS	Yes	NS	High Flex	25	80	50
											Stainless	28	130	130
											Steel	25	180	120
AT20-DL	20.0	13.0	5.0	Steel	NS	NS	Yes	NS	Yes NS	High Flex	25	150	120	
											Stainless	26	200	150

- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = whiteStandard cord = steel
- · Minimum belt length 1.5 meters


- Maximum belt length = 22.7 meters
- Maximum belt width = 150 mm
- NS Non-Standard Consult Megadyne for availability
- · For additional details, request the Megaflex Technical Catalog
- · High Power, High Flex and High Power flex are steel cord
- · All items subject to minimum order quantity

RPP5 - RPP8 - RPP14

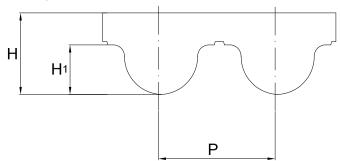
RPP5 DL - RPP8 DL - RPP14 DL

Below Options on Request with Minimum Order Qty.:

- · Extra TPU backing single sided only
- · Extruded covers single sided only
- · Laminated covers single sided only
- · Fabricated covers single sided only
- · Anti-static fabric tooth side/drive side only
- · Cleats single sided only

- Cover side machined modifications single sided only
- Tooth side machined modifications

	BELT	OVERALL	тоотн							MINIMUM PULLEY TEETH/IDLER DIAMETER					
	PITCH (P)	THICKNESS (H)	HEIGHT (H¹)	C	ORD O	PTIONS	5	MINIMUM PULLEY	Z min.	Z min DL	Outside Idler (mm)	Inside Idler (mm)			
ТҮРЕ	mm	mm	mm	Standard Cord	Kevlar	High Flex	Stainless Steel	TEETH (Z) BY CORD TYPE	(E)	(+) (+)	(+)	(+)			
								Steel	15	-	60	25			
RPP5	5.0	3.8	2.0	Steel	NS	Yes	Yes	High Flex	15	-	40	25			
								Stainless	18	-	65	65			
					NS	Yes		Steel	-	18	60	25			
RPP5-DL	5.0	5.2	2.0	Steel			Yes	High Flex	-	18	40	25			
								Stainless	-	22	65	65			
								Steel	18	-	100	45			
RPP8	8.0	5.4	3.2	Steel	Yes	Yes	Yes	Kevlar	18	-	100	45			
	0.0	0.1	0.2	Clool	100	100	100	High-Flex	18	-	80	40			
								Stainless	20	-	110	60			
								Steel	-	25	100	45			
RPP8-DL	8.0	7.8	3.2	Steel	NS	Yes	Yes	High Flex	-	25	80	40			
								Stainless	-	28	110	60			
RPP14	14.0	10.0	6.0	Steel	NS	NS	Yes	Steel	32	-	250	145			
	. 1.0		0.0	2.501			Yes	Stainless	38	-	280	170			
RPP14-	14.0	14.5	6.0	Steel	NS	NS	S Yes	Steel	-	40	250	145			
DL	1 1.0	1 7.0	0.0	0.001	1,0			Stainless	-	44	280	170			


- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = white
- Standard cord = steel
- Minimum belt length 1.5 meters
- · Standard NFT (nylon facing on tooth)

- Maximum belt length = 22.7 meters
- Maximum belt width = 150 mm
- · NS Non-Standard Consult Megadyne for availability
- For additional details, request the Megaflex Technical Catalog
- High Flex is steel cord
- · All items subject to minimum order quantity

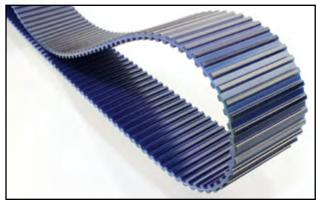
MTD 8M

P2

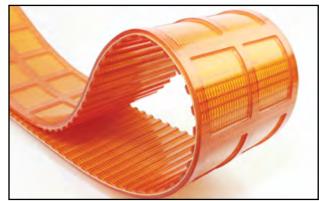
Below Options on Request:

- · Nylon fabric on teeth (NFT) available from 1.9 meter (6.2 feet) and up
- Extra TPU backing
- Extruded covers
- Laminated covers
- Fabricated covers

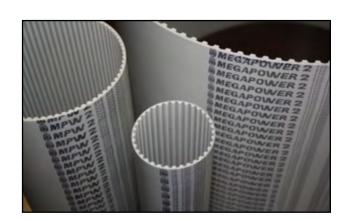
- Anti-static fabric MTD8 tooth side only P2 drive side only
- Cleats
- Cover side machined modifications
- Tooth side machined modifications MTD only


	BELT	OVERALL	тоотн										UM PULLE	_
	PITCH (P)	THICKNESS (H)	HEIGHT (H¹)		CORD OPTIONS						MINIMUM PULLEY	Z min.	Outside Idler (mm)	Inside Idler (mm)
TYPE	mm	mm	mm	Standard Cord	Kevlar	High Power	High Flex	High Power Flex	Stainless	Hi-Power Stainless	TEETH (Z) BY CORD TYPE	(+) (+) (+)	(±) (±)	
											Steel	20	80	40
MTD8	8.0	5.6	3.4	Steel	Yes	NS	Yes	NS	Yes	NS	Kevlar	20	100	50
	0.0	3.0	0.4	Oloci	103	140	103	140	103		High Flex	20	80	40
											Stainless	24	110	80
P2		0.0		041	NO	NO	NO	NO	V	NO	Steel	45	90	50
FLAT	-	2.0	-	Steel	NS	NS	NS	NS	Yes	NS	Stainless	60	150	80

- Standard compound = Thermoplastic polyurethane (TPU)
- Compound hardness = 92 Shore A
- Standard color = white Standard cord = steel
- Minimum belt length 1.5 meters


- Maximum belt length = 22.7 meters
- Maximum belt width = 150 mm
- NS Non-Standard Consult Megadyne for availability
- For additional details, request the Megaflex Technical Catalog High Power, High Flex and High Power Flex are steel cord
- All items subject to minimum order quantity

MEGAPOWER2



Megadyne manufactures **Megapower2 Cast PU Belts** for power transmission, positioning and conveying applications. Megapower standard power transmission belts are molded in grey/green color, 88 Shore A thermoset PU and reinforced with zinc steel cords. Alternative cords, such as high power steel (HP), high flex steel (HF) and high power/high flex steel (HPF), Kevlar, stainless steel, fiberglass and polyester are considered specials and can be made with justified quantities.

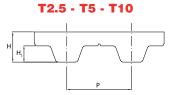
MECHANICAL AND CHEMICAL CHARACTERISTICS

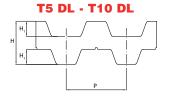
- Stable dimensions
- · Low installation tension
- · Low noise
- · Maintenance free
- · High abrasion resistance
- · High flexibility
- Aging, hydrolysis and ozone resistant
- High resistance steel traction cords
- Working temperature -25°C/+80°C (-13°F/+176°F)
- Minimum elongation and exceptional flexibility
- High resistance to oils, grease and gasoline
- Linear speeds up to 20 m/s
- · Acid and alkali resistant

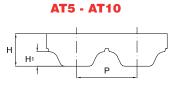
Additionally, Megadyne offers singal, dual and tri-durometer belts in various colors and hardness ranges from 40 to 85 Shore A. Belts can also be molded with integrated cleats and other shapes for product handling and linear actuation applications.

- Extra PU backing
- Fabricated covers
- Integrated & Mechanical Cleats
- **Cover Side Machined Modifications**
- **Tooth Side Machined Modifications**
- Alternative colors and/or hardness consult Megadyne

	н <u>н</u>	No. of Belt Teeth CORD OPTI				PTIO	NS				MINIMUM PULLEY TEETH/IDLER DIAMETER								
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H/H _T)	TOOTH HEIGHT (H¹)											MINIMUM PULLEY TEETH (Z) BY CORD	Z min.	Outside Idler (inch)	Inside Idler (inch)		
	Inch	Inch	Inch	min	max	Standard Cord	High Flex	High Power	High Power Flex	Kevlar	Fiberglass	Stainless	Polyester	TYPE	$\begin{array}{c} (+) \\ (+) \\ (+) \end{array}$	((+)		
MXL	.080"	.047"	.002"	55	485	Steel	NS	NS	NS	Yes	NS	NS	Yes	Steel	10	.708	.787		
WAL	.000	.047	.002	55	400	Steel	INO	INO	INO	res	INO	INO	res	Kevlar	12	.787	.787		
														Steel	10	1.18	1.18		
XL	0.20"	.090"	.066"	30	283	Steel	NS	NS	NS	Yes	Yes	NS	Yes	Kevlar	10	1.18	.787		
AL	0.20	.090	.000	30	203	Sieei	INO	INO	INO	165	165	INS	162	Fiberglass	13	1.38	1.38		
														Stainless	13	1.38	1.38		
														Steel	15	2.36	2.36		
L	.375"	.141"	.074"	23	160	Steel	NS	NS	NS	Yes	Yes	NS	Yes	Kevlar	15	2.36	2.36		
-	.373	.141	.074	23	100	Sieei	INS	INS	INS	162	162	INS	Yes	Yes	Yes	Fiberglass	18	2.56	2.56
														Stainless	18	2.56	2.56		
														Steel	14	3.15	2.36		
н	0.50"	.169"	.090"	46	102	Steel	NS	NS	NS	NS	Yes	Voc	Yes	Kevlar	14	3.15	2.36		
	0.30	.109"	.090*	40	102	Sieei	INS	INS	INS	INS	res	Yes	res	Fiberglass	18	3.54	2.56		
														Stainless	18	3.15	2.56		


- Standard compound = Thermset polyurethane Compound hardness = 88 Shore A
- Standard color = gray / green
- Alternative colors and/or hardness consult Megadyne
- Standard cord = steel


- Contact Megadyne for specific belt size requirements Belt width = We slit to any requested width
- NS Non-Standard Consult Megadyne for availability
- For additional details, request the Megapower Technical Catalog High Power, High Flex and High Power Flex are steel cord
- All items subject to minimum order quantity


MEGAPOWER2 - METRIC SINGLE & DUAL SIDE

Below Options on Request:

- Extra TPU backing
- Fabricated covers
- Integrated & Mechanical Cleats
- Cover side machined modifications
- Tooth side machined modifications
- Alternative colors and/or hardness

P	PITCH		тоотн						MINIMUM PULLEY TEETH/IDLER DIAMETER							
TVDE	(P)	THICKNESS (H)			ber of Teeth		C	ORD	ОРТІ	ONS			MINIMUM PULLEY	Z min.	Outside Idler (mm)	Inside Idler (mm)
ТҮРЕ	mm	mm	mm	min	max	Standard Cord	High Flex	High Power	High Power Flex	Kevlar	Fiberglass	Stainless	TEETH (Z) BY CORD TYPE	(+) (+)	(I)	+)
													Steel	10	18	20
T2.5	2.5	1.3	0.7	48	474	Steel	NS	Yes	NS	Yes	NS	Yes	HP	15	30	30
													Kevlar	12	20	20
													Steel	10	30	30
													High Flex	10	30	30
													High Power	15	40	60
T5	5.0	2.2	1.2	24	391	Steel	Yes	Yes	Yes	Yes	Yes	NS	Hi-Power Flex	12	30	30
													Kevlar	12	30	30
													Fiberglass	15	40	40
													Stainless	15	40	40
													Steel	10	30	30
T5-DL	5.0	3.4	1.2	82	220	Steel	Yes	NS	Yes	Yes	Yes	Yes	High Flex	10	30	30
													Kevlar	12	30	30
													Stainless	15	40	40
													Steel	12	60	60
					High Flex	12	50	50								
									.,		.,	Vas	High Power	15	100	100
T10	10.0	4.5	2.5	26	225	Steel	Yes	Yes	Yes	Yes	Yes	Yes	Hi-Power Flex	14	80	80
													Kevlar	15	60	60
													Fiberglass	15	70	70
													Stainless	15	70	70
													Steel	12	60	60
T10- DL	10.0	7.0	2.5	26	188	Steel	Yes	NS	Yes	Yes	NS	Yes	High Flex	12	50	50
													Kevlar	15	60	60
													Stainless Steel	15 15	70 60	70
													High Flex	12	40	25
													High Power	25	60	25 40
AT5	5.0	2.7	1.2	45	400	Steel	Yes	Yes	Yes	Yes	NS	Yes	Hi-Power Flex	20	40	
													Kevlar	15	60	40 25
													Stainless	15	65	60
													Steel	15	120	50
												HF	15	80	50	
													HP	25	150	80
AT10	10.0	4.5	2.5	37	194	Steel	Yes	Yes	Yes	Yes	NS	Yes	HPF	16	100	60
							.55	.50					Kevlar	15	120	50
													Stainless	19	110	110

- Standard compound = Thermoset polyurethane Compound hardness = 88 Shore A

- Standard color = gray / green
 Alternative colors and or hardness consult Megadyne
- Standard cord = steel

- Contact Megadyne for specific belt size requirements
 Belt width = We slit to any requested width
 NS Non-Standard Consult Megadyne for availability
 For additional details, request the Megapower2 Technical Catalog
 High Power. High Flex and High Power flex are steel cord
 All items subject to minimum order quantity

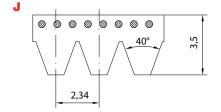
MEGARIB belts are manufactured in polyurethane with high-tension cords, which combine the high flexibility of flat belts with the power transmission capability of V-belts.

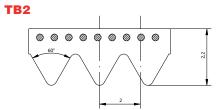
MEGARIB belts offer the following features:

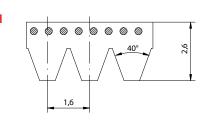
- · Stable dimension
- · High flexibility
- · High transmission ratio
- · Small pulley diameters
- · Excellent oil, water and ozone resistance
- Compact smooth running drive system with low vibration
- Small pulley diameters can be used in combination with inside or outside idlers
- · Linear belt speeds up to 60 meters per second are possible
- Even distribution of working load throughout entire belt width
- · Flat pulleys can be used in order to reduce drive costs
- High flexibility permits complex drive configurations such as serpentine or twisted drives
- Resistance to temperatures from -15° C to +60°C (+5°F to +140°F)
- · Power performance can be increased by increasing the number of ribs

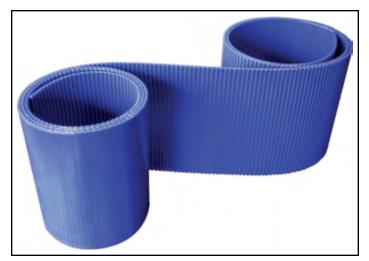
On request, elastic (EL) MEGARIB belt can be manufactured in polyurethane with a semi-elastic cord. For use on fixed center distance drives, eliminating idlers, reducing noise and vibration. The absence of a tensioning mechanism offers additional cost savings.

For additional details, request the Megadyne PV Belt Technical Catalog.





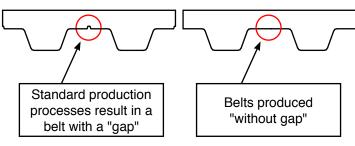

BELT RIB		RIB P	РІТСН	MINIMUM B	ELT LENGTH	махімим в	ELT LENGTH	OVERALL 1	THICKNESS
SECTION	ANGLE	Inch	mm	Inch	mm	Inch	mm	Inch	mm
Н	40°	0.062	1.60	8.8	223	77.8	1976	0.102	2.6
J	40°	0.092	2.34	8.7	220	55.0	1397	0.138	3.5
TB2	60°	0.078	2.00	6.1	156	46.7	1186	0.086	2.2



MEGALINEAR FC - METRIC T - FOOD CONTACT - WITHOUT GAP

Megalinear FC is an open end urethane belt designed for use in the food industry.

Below Options on Request:

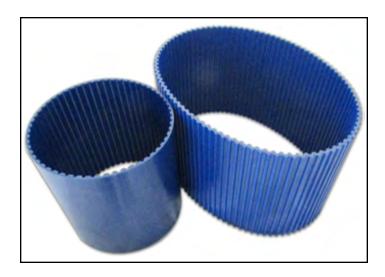

- · Alternative pitches available
- · Transparent color
- · Stainless steel cord
- · Surface impressions
- · Extra backing

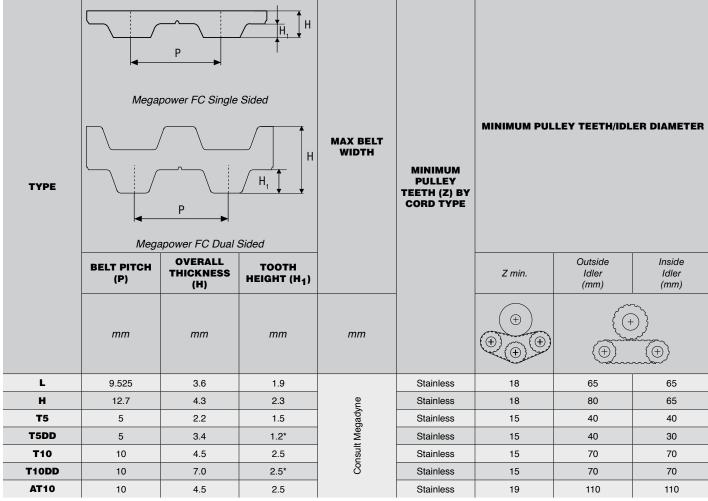
	H	P		MAX BELT WIDTH	CORD OPTIONS			MINIMUM	MINIMUM	MINIMUM PULLEY TEETH/IDLER DIAMETER						
TYPE	BELT PITCH (P)	OVERALL THICKNESS (H)	TOOTH HEIGHT (H ₁)								PULLEY TEETH (Z) BY CORD	Z min.	Z min.	Idler min. dia. (mm)	Z min.	Idler min. dia. (mm)
	mm	mm	mm	mm	Standard Cord	Kevlar	High Power	High Flex	High Power Flex	Stainless	TYPE		•		0	00
T5	5.0	2.3	1.2	150	Steel	Yes	Yes	Yes	NS	NS	Kevlar	12	15	30	12	30
T10	10.0	4.5	2.5	150	Steel	Yes	Yes	Yes	Yes	Yes	Kevlar	15	20	60	15	60

- Standard compound = Thermoplastic polyurethane (TPU) meeting EU regulations 1935/2004, EU 10/2011 and EU 174/2015
- Compound hardness = 85 Shore A
- · Standard color = Dark blue
- Standard cord = Kevlar

- Standard compound designed for use in humid and wet applications
- For additional details, request the Megalinear Technical Catalog
- All items subject to minimum order quantity

What is a belt "without gap"?




Belts "without gap" are commonly used in applications where contamination is a concern and/or where moisture is present. The absence of the gap protects the cord from corrosion and contamination.

Megapower FC is a truly endless cast urethane belt designed for use in the food industry.

Below Options on Request:

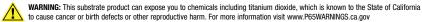
- Dual sided T5 & T10
- · Consult Megadyne for convey side backings
- Profiles (tooling necessary)

- * drive side
- Standard compound = Thermoplastic polyurethane (TPU) meeting EU regulations 1935/2004, EU 10/2011 and EU 174/2015
- Compound hardness = 88 Shore A
- Standard color = Dark blue

- · Standard cord = stainless steel
- · Standard compound designed for use in humid and wet applications
- For additional details, request the Megapower Technical Catalog
- · All items subject to minimum order quantity

EXTRUDED COVER OPTIONS

Cover materials available offer enhanced performance in applications where: high or low friction is desired, non-marking of product conveyed is essential, heat resistance is required, compressibility is essential for fragile product handling, wear resistance is needed for abrasive material being conveyed, or products moved must be offloaded easily without sticking. Certain material compatibilities allow for a cover to be extruded in-line to the conveying side of Megalinear and Megaflex timing belt during base belt extrusion. Covers that are smooth in various durometers or covers that have impressions for extra grip and secure product handling are possible. Extruded covers provide a homogeneous construction eliminating the chance of cover delamination. Megadyne's production flexibility and creative belt designs enable us to create the exact belt for your specific product handling need.


COVER DESC	RIPTION	MATERIAL	COLOR	HARDNESS SHORE A	AVAILABLE THICKNESS (mm)	COVER BENEFIT
NFT	1	Nylon	Green	N/A	N/A	Low friction on belt tooth side
NFB	1	Nylon	Green	N/A	N/A	Low friction on belt conveying side
AVAFC 40		PU	Orange	40	2 to 4	High grip, very good wear and oil resistance
AVAFC 55	1	FDA PU	Crème	55	2 to 4	FDA, good grip, very good wear and oil resistance
AVAFC 60		PU	Blue	60	2 to 4	Good grip, excellent wear resistance and good oil resistance
AVAFC 70		PU	Gray	70	2 to 4	Excellent cut and wear resistance and good oil resistance
AVAFC 85	1	PU	Transparent	85	2 to 4	Excellent cut and wear resistance and good oil resistance
APL (Megalinear only)		PU/PVC	Red	55	3.5	Good grip, good oil and wear resistance
Z-Cover		PU	Yellow	56	3 to 8	Good grip, flexibility, cushioned support
Ribbed (Megalinear only)		PU	Transparent	70	2.7	Good grip, good oil and wear resistance
Fishbone (Megalinear only)	Way and the second	PU	Transparent	70	4.3	Good grip, good oil and wear resistance
Super Grip		PVC	Green	55	4.5	Good grip, non-marking, good oil and wear resistance
Mini Grip		PVC	Green	55	1.3	Good grip, non-marking, good oil and wear resistance
Red Grip (Megaflex only)		PU/Rubber Blend	Red	50	1 to 8	Good grip, non-marking, good oil and wear resistance
Aramid Felt		Kevlar/ Nomex	Yellow/White	N/A	8 or 12	High temperature, non-marking

FABRICATED COVER OPTIONS

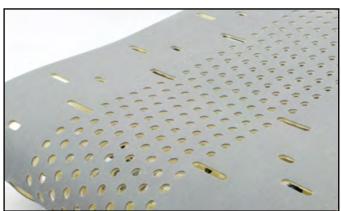
In many cases, the chosen belt substrate and cover material do not lend themselves to the extrusion process. In these cases, depending on the base belt type we can fabricate or laminate a cover to assist in product handling. Covers can be further modified with holes, slots, ground impressions, grooves, pockets and other designs to assist in enhancing product handling and movement. See the "Modifications" page in this catalog for additional details.

COVER DESCRIPTION		MATERIAL	COLOR	HARDNESS SHORE A	AVAILABLE THICKNESS (mm)	COVER BENEFIT
Chrome Leather	1	Treated Leather	Gray	65	2 to 3	Non-marking, oil resistant
DuraTaq®		Natural Rubber	Orange	45	2.4 to 14	Excellent grip with wear resistance
Gum Rubber		Natural Rubber	Tan	40	2.4 to 14	High friction, non-marking
Linaplus®	1	Natural Rubber	White	38	2 to 12	FDA material, good friction, non-marking
Linard®		Natural Rubber	Red	60	2 to 12	Grip with good wear resistance
Linatex®		Natural Rubber	Red	42	2 to 12	High Grip with good wear resistance
Linitrile		Nitrile-Butadiene	Orange	55	1 to 10	Good grip, oil resistance
NBR Rough Top		Nitrile-Butadiene	Green	55	4 to 10	Good grip with abrasion resistance
Neoprene		Synthetic Rubber	Black	50, 70	3 to 12	Good grip, oil resistance
Neoprene Foam		Synthetic Rubber	Blue	N/A	3 to 18	Cushioning and oil resistance
Nitrile		Carboxilated Nitrile	White	40	2.4 to 14	Good grip and wear resistance
NR Rough Top		Natural Rubber	Red/Tan	35	4 to 10	Good grip
PVC Sawtooth		Polyvinylchloride	White	60	2.5	Good grip, oil resistance, non-marking
PVC Smooth		Polyvinylchloride	Blue	40	2	Good grip, oil resistance, non-marking
PVC Smooth		Polyvinylchloride	White	60 to 65	2 to 3.5	Good grip, oil resistance, non-marking
Sprayed PU Foam		Polyurethane	Yellow/Gray	25 to 70	1 to 10	Good grip, cushioning and very good wear resistance
Sylomar PU Foam		Polyurethane	Blue	Low Density	3 to 12	Soft, good cushioning
Sylomar PU Foam		Polyurethane	Green	Med. Density	3 to 12	Soft, good cushioning
Sylomar PU Foam		Polyurethane	Yellow	High Density	3 to 6	Soft, good cushioning
ТТ60		Polyester Felt	Black/Gray	N/A	2	Non-marking, oil resistant

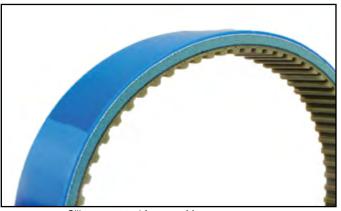
Linatex®, Linard® and Linaplus® are registered trademarks of Weir Minerals.

COATED COVER OPTIONS

Megadyne has developed state-of-the-art processes for applying silicone and neoprene to our entire line of urethane flat and timing belts. This process is especially compelling when Megalinear Wide belts are coated for synchronous conveying applications. Coated belts are commonly used in product transport applications where environmental conditions such as temperature would have an adverse effect on fabricated covers. Additionally, the coating of certain material substrates allows for the finished product to move across low profile conveyors where designs such as knife edge pulley transports are common.


FDA silicone materials allow for use in the transport of hygienic goods and medical related parts and components. Silicone is an excellent cover material where the use of glues and adhesives are present in product manufacture. Neoprene rubber can be formulated to provide good chemical and wear resistance, anti-static features, and self-extinguishing (UL94V) non-flammable properties for use in precision conveying applications. Coated belts can be further modified with holes to assist in vacuum draw applications.

MATERIAL	SILICONE	NEOPRENE
Hardness (Shore A)	40	55
Color	Red, Black, Blue, White, Gray	Black
Thickness Range (mm)	1 to 10	0.5 to 1
Working Temperature Range (C°)	-40/+230 (-40/+446°F)	-20/+120 (-4/+248°F)
Abrasion Resistance	Fair	Good
Oil Resistance	Poor	Fair/Good
FDA Approved	Yes*	No

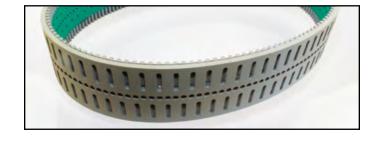

^{*}Contact Megadyne for details

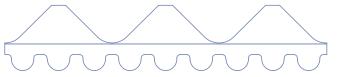
WARNING: This substrate product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer or birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

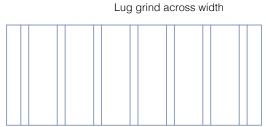
Silicone coated belt with holes and slots

Silicone coated foam on Megapower

Neoprene coating process



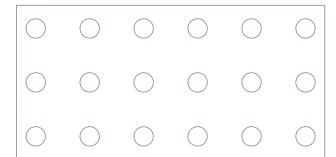

Silicone coated Megalinear

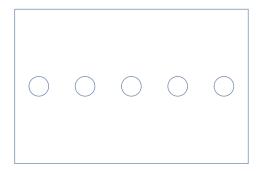

MODIFICATIONS

Some of our most popular modification types are illustrated below. Actual finished modified belts photos follow. Ongoing investments in automated processes enable Megadyne to offer high quality and tight tolerances to meet your applications' specific needs.

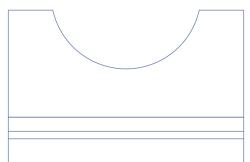
Profiles ground into cover

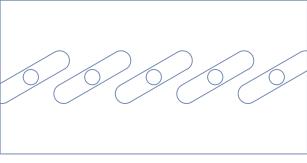
Grooves along width





Knife slits across width


Holes and Countersinks



Square pattern of holes

Single row of holes

Slots with holes

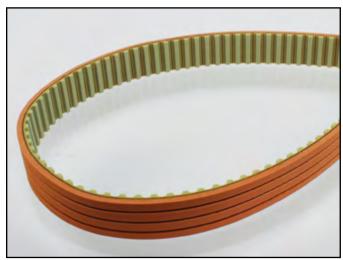
Convex grind

MODIFICATIONS

Drive side tooth removal, NFT re-insertion, hole perforations cover side

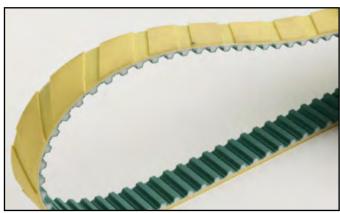
Process enhancements, skilled personnel, a can-do attitude and ongoing capital equipment investments enable Megadyne to stay at the forefront of new design developments and deliver solutions to customers across the spectrum of industries we serve. Let Megadyne create the right belt to deliver optimum performance for your application.

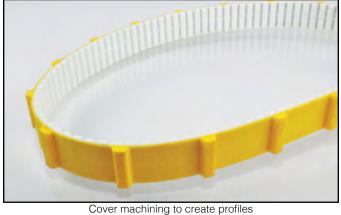
In addition to materials and process selection of the base belt, Megadyne can fully customize belts with the following machined modifications:

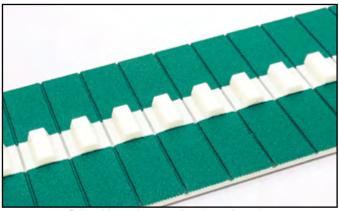

- · Holes/Perforations
- Pockets
- Slots
- Saw Tooth
- Grooves
- Custom Shapes
- Grinding
- Notching/Knife Cut
- · Fabric added to the tooth side of belt
- Vacuum Countersinks

Sectional tooth removal - drive side, slotting and hole punch for vacuum

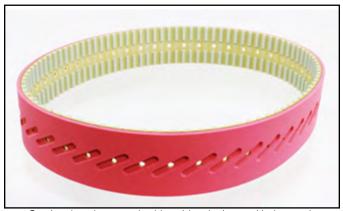
Drive side tooth removal on edges, longitudinal grooving through remainder of teeth


Longitudinal grooving on cover side

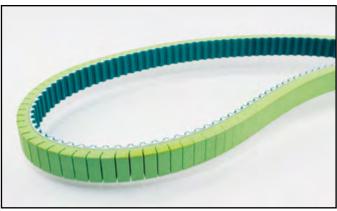

Drive side tooth removal, nylon re-insertion, machined cover



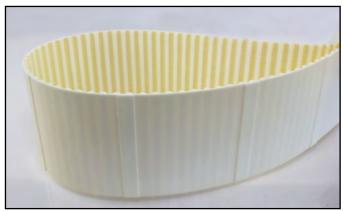
MODIFICATIONS



Diagonal machining for water venting

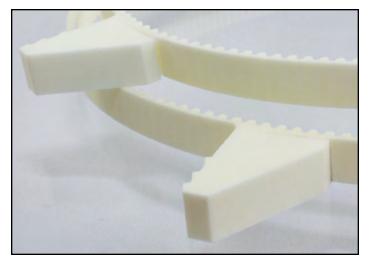


Drive side tooth removal, nylon re-insertion


Sectional tooth removal - drive side, slotting and hole punch for vacuum

Lateral knife for added flexibility

Drive side tooth removal, nylon re-insertion, slot addition cover side

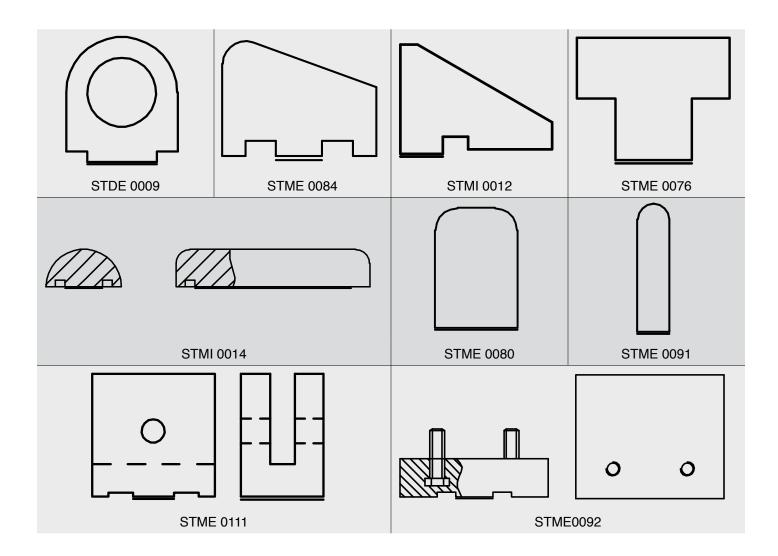


Cover machining to create profiles

Longitudinal grooving - tooth side

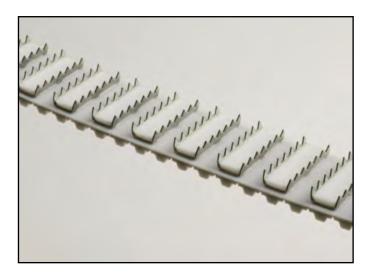
CLEATS

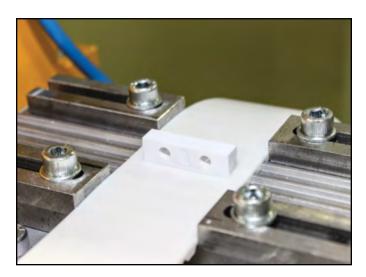
Megadyne offers a broad range of injection molded cleats as well as cleats customized from urethane sheets using CNC equipment. The majority of cleats can be grouped into geometric shapes as illustrated below. For specific dimensions relating to the shapes shown, contact Megadyne referring to the geometric shape.


For specific details on pulley sizes required for cleated belts, please see our Megalinear or Megaflex Technical catalogs.

Below is just a small example of the many cleats we can provide.

Upon request, cleats with brushes can also be supplied.

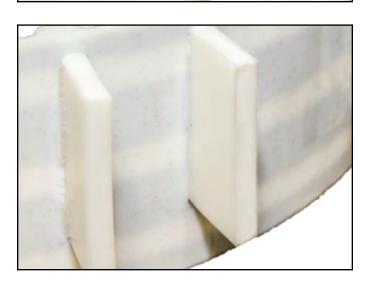

WARNING: This product can expose you to chemicals including titanium dioxide, which is known to the State of California to cause cancer or birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

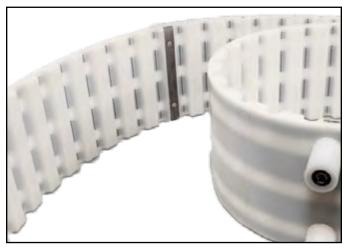


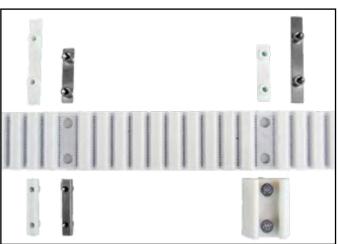
CLEATS - WELD ON TYPE

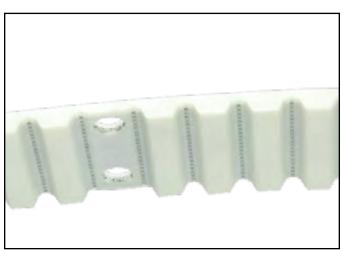
In addition to the synchronized product movement offered with Megalinear and Megaflex belts, cleats can be added to the back side of our belts to assist in product sortation, separation or actuation. Cleats are available in a variety of shapes, sizes and hardness and can be welded where you want them to ensure exact product positioning.

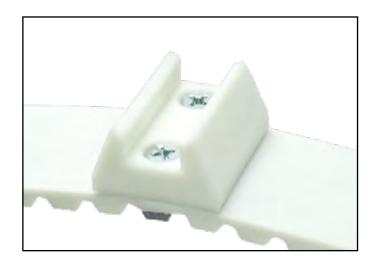
At Megadyne, we have several processes to weld cleats to belts. The choice of process used is depended on several factors, including quantity of cleats to be welded spacing of cleats and cleat design.




CLEATS - MECHANICAL TYPE


Mechanical teeth (also known as false teeth) are used for attaching cleats. Many application designs require a plastic or metal cleat to be mechanically attached to either Megalinear or Megaflex belt. Mechanical attachments provide easy interchangeability and the flexibility for dimensional re-spacing, especially in an industry like packaging and automation where timing and positioning is essential.


Mechanical teeth are added to the belts drive side wherever necessary to deliver the spacing requirements needed in an application. The mechanical tooth has a housing that extends up and through the belt. The housing is threaded, thus allowing a profile to be bolted on for easy installation and removal.



Megadyne can supply complete drives with standard pulleys made in accordance to ISO specifications, or custom constructions according to customer requirements.

GLOSSARY OF POLYURETHANE TERMS

AVAFC Belt backing used for conveying abrasive materials, with high friction coefficient,

good resistance to oils and very good resistance to abrasion.

Backings Some belts can be modified by adding a backing to achieve abrasion resistance,

desired coefficient of friction, or to act as a cushion. Backings can also be ground

to create pockets for product transfer as in vacuum applications.

Endless Joined Generally, an open-end belt that has been joined to form and endless belt via a

splice or joint.

FDA/Food Grade Polyurethane material is generally acceptable for use in food applications, while

rubber is not.

Finger Joint Splicing technique for thermoplastic belts where ends of belt are cut in v-shaped

"fingers," which mesh together and are melted or welded together to form an

endless belt.

Mandrel Molded Generally, a belt made on a round steel tool with continuously wound (spiral) cords

and needs no splice to form an endless belt. Our Megapower product is an

example of this type of product.

NFT Nylon Fabric on Teeth.

NFB Nylon Fabric on Back.

Open-End Generally, a belt that must be spliced together via a finger joint or a mechanical joint

to form an endless belt. Belts can also be used in open-end configuration, as is

common in linear motion drives.

Polyurethane A high-grade polymer with better abrasion, cut, impact, and tear resistance than

rubber or many other plastics (also known as Urethane).

PPJ Progressive Pin Joint - a Megadyne production method to mechanically fasten

two ends of an open-end belt together to form an endless joined belt

PU The abbreviation of Polyurethane.

Shore Hardness The scale by which a polyurethane component is measured for hardness, typically

expressed as "Shore A."

Thermoplastic A urethane which can be repeatedly softened or melted and which will harden to a

new shape when cooled. Thermoplastic materials can be heated to become re-mold able and weld-able. This allows thermoplastic belts to be easily spliced by reheating

the material and melting it to form an endless belt via a joint or splice. Our

Megalinear and Megaflex products are made with this elastomer.

TPU Abbreviation for Thermoplastic Polyurethane.

Thermoset A urethane which cures using heat (or catalyst). The material is chemically cross-

linked and cannot be reprocessed. An irreversible cure - Thermoset materials can

not be melted and reshaped after it is cured. Not able to weld cleats. Our

Megapower product is made with this elastomer.

Truly Endless A construction that yields a long length truly endless (no splice) belt without the

need for a mandrel. Our Megaflex is an example of this type of construction.

TERMS, CONDITIONS AND LIMITED WARRANTY OF SALE

All prices, terms and conditions of sale are subject to change without prior notice. Buyer agrees to all terms and conditions of seller upon the placement of any and all purchase orders.

GENERAL

- All orders are subject to a minimum charge of \$25.00
- All claims must be made within seven (7) days of receipt of merchandise
- The company reserves the right at all times to reject any and all orders for any reason.

PAYMENT TERMS

- · Net 30 days (to approved and qualified accounts)
- We reserve the right to hold shipments against past due accounts.
- Seller may require full or partial payment in advance if, in its sole judgement, the financial condition of the buyer does not justify the terms specified.
- All past due accounts are subject to a late payment charge of 1.5% per month, or maximum allowed by law if different, along with the expenses incidental to collection including reasonable attorney's fees
- · Returned checks are subject to a minimum \$50.00 charge.

ACCEPTANCE, ALTERATION AND CANCELLATION OF ORDERS

Orders for other than standard items or standard lengths may not be cancelled after purchase has been committed, production scheduled or any costs incurred.

RETURN OF DEFECTIVE MERCHANDISE

Defective or failed material to be held at the buyer's premises until authorization has been granted by seller to return or dispose of merchandise. Merchandise to be returned for final inspection must be returned Freight Prepaid in the most economical way. Credit will be issued for material found to be defective upon our inspection based on prices at time of purchase.

MERCHANDISE SHIPPED IN ERROR

Buyer must notify seller immediately on any merchandise shipped in error. Upon notification, merchandise is to be returned to seller either via truck on a Freight Collect basis, via carrier of our choice, or via UPS on a Freight Prepaid basis. Buyer will be reimbursed for cost of merchandise, plus any additional freight which may have been incurred due to shipping error.

MERCHANDISE ORDERED IN ERROR

Standard packaged merchandise only may be returned, provided that the merchandise is in the original buyer's possession not more than 30 days. If merchandise is accepted for return, merchandise must be returned Freight Prepaid, and buyer will be charged a minimum of 15% rehandling charge, plus a chargeback for outbound freight charges if the original order was shipped prepaid. Returns are not accepted for any merchandise that is specifically manufactured to meet the buyer's requirement of either specifications or large quantity.

DELIVERY, DAMAGES, SHORTAGES

Delivery to the initial common carrier shall constitute the delivery to the buyer. Our responsibility, insofar as transportation risks are concerned, ceases upon the delivery of the merchandise in good condition to such a carrier, and all the merchandise shall be shipped at the buyer's risk.

GOODS DAMAGED IN SHIPMENT

Upon receipt of shipment, any evidence of damage to original shipping package must be reported by the receiving party and a claim made with the delivering carrier upon receipt of shipment.

CONCEALED DAMAGE

Any evidence of damage to material shipped, upon the opening of the original shipping package, must be reported by the receiving party to and a claim made with the delivering carrier without delay.

LIMITED WARRANTY

The merchandise or products sold or distributed by Megadyne America are warranted to our customers to be free from defects in material and workmanship at the time of shipment by us. All warranty claims shall be made within 90 days after we have shipped the merchandise. Our liability hereunder is limited to the purchase price of any merchandise proved defective, or, at our option, to the replacement of such merchandise upon its authorized return to us.

THIS WARRANTY IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE CREATED UNDER APPLICABLE LAW INCLUDING, BUT NOT LIMITED TO, THE WARRANTY OF MERCHANTABILITY AND THE WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL WE BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOSS OF PROFITS.

Copyright Notice: Megadyne America LLC copyright. All rights reserved. Megadyne is and shall remain the owner of all right on drawings, technical specifications and any other information contained in the present catalog or otherwise communicated by Megadyne America LLC to the customer. The customer shall not disclose such information to third parties or use such information for purposes different from the definition of the order to Megadyne America LLC, unless upon prior written authorization of Megadyne.

BELARUS

Minsk

Phone +375 17 2802486 Info.by@megadynegroup.com

BRAZIL

Sorocaba

Phone +55 15 2101 7700 Info.br@megadynegroup.com

CANADA

Edmonton

Phone +1 780 461 4400 Info.ca@megadynegroup.com

Montreal

Phone +1 514 31 2341 Info.ca@megadynegroup.com

Toronto

Phone +1 905 602 4400 Info.ca@megadynegroup.com

CHINA

Beijing

Phone +86 10 8150 7478 info.cn@megadynegroup.com

Foshan

Phone +86 757 83815530 info.cn@megadynegroup.com

Fujian

Phone +86 595 8816 0309 info.cn@megadynegroup.com

Ningbo*

Phone +86 574 8650 2886 info.cn@megadynegroup.com

Qingdao*

Phone +86 532 8765 2117 info.cn@megadynegroup.com

Shangha

Phone +86 21 5447 1473 info.cn@megadynegroup.com

Shenyang

Phone +86 24 2572 3238 info.cn@megadynegroup.com

COLOMBIA

Bogotá

Phone +57 (1) 471 0503 Info.co@megadynegroup.com

Cartagena

Phone +57 (5) 672 997 Info.co@megadynegroup.com

CZECH REPUBLIC

Prague

Phone +420 2 8481 7181 Info.cz@megadynegroup.com

FRANCE

Paris

Phone +33 1 6079 8200 info.fr@megadynegroup.com

St. Jean De Maurienne*

Phone +33 4 7964 0613 info.fr@megadynegroup.com

GERMANY

Borchen

Phone +49 5251 8735 0 info.de@megadynegroup.com

Elchingen*

Phone +49 7308 9665 0 info.de@megadynegroup.com

HUNGARY

Budapest

Phone +36 23 428 628 info.hu@megadynegroup.com

INDIA

Chennai*

Phone +91 98841 81175 info.in@megadynegroup.com

ISRAEL

Caesarea

Phone +972 4 6371485 sales@megabelt.co.il

ITALY

Turin*

Phone +39 011 926 8052 info@megadynegroup.com

Milan*

Phone +39 039 689 601 info.it@megadynegroup.com

Pescara

Phone +39 085 9700547 info.it@megadynegroup.com

Venice

Phone: +39 041 929 367 info.it@megadynegroup.com

MEXICO

Mexico C.P.

Phone +52 55 5587 3680 info.mx@megadynegroup.com

PERU

Lima

Phone +51 713 0069 info.pe@megadynegroup.com

DOI AND

Bydgoszcz*

Phone +48 52 348 77 12 info.pl@megadynegroup.com

SOUTH AFRICA

Johannesburg

Phone +27 (0)12 661 1652 info.za@megadynegroup.com

Cape Town

Phone +27 (0)21 982 0772 info.za@megadynegroup.com

SPAIN

Barcelona*

Phone +34 933 774 441 www.avetm.com

Vilanova*

Phone +34 93 811 5450 info.es@megadynegroup.com

SWEDEN

Kristianstad

Phone +46 10 1309600 info.se@megadynegroup.com

THAILAND

Bangkok

Phone: +66 (0) 27115477 info.th@megadynegroup.com

TURKEY

Izmir*

Phone +90 232 877 07 00 info.tr@megadynegroup.com

U.K.

Birmingham

Phone: +44 1384 215 021 info.uk@megadynegroup.com

U.S.A

California

Phone +1 323 265 8061 info.us@megadynegroup.com

Florida

Phone +1 813 241 4111 info.us@megadynegroup.com

Georgia*

Phone +1 770 887 9725 info.us@megadynegroup.com

Illinois

Phone +1 630 752 0600 info.us@megadynegroup.com

New Jersey Americas HQ

Phone +1 973 227 4904 info.us@megadynegroup.com

New York*

Phone +1 716 667 7450 info.us@megadynegroup.com

North Carolina*

Phone +1 704 583 5388 info.us@megadynegroup.com

Oregon

Phone +1 503 231 7224 info.us@megadynegroup.com

Texas

Phone +1 972 438 6992 info.us@megadynegroup.com

HEADQUARTERS

ITALY Turin

Via S. Lucia, 114 10075 Mathi (Torino) Phone +39 011 926 8052 info@megadynegroup.com

www.megadynegroup.com

* Manufacturing locations

